The zero forcing number of Hamming graphs

Robin Simoens

Ghent University and Polytechnic University of Catalonia
28 March 2024

Joint work with Aida Abiad and Sjanne Zeijlemaker

Zero forcing

"If a red vertex has a unique white neighbor, color it red."

Zero forcing

"If a red vertex has a unique white neighbor, color it red."

Zero forcing

"If a red vertex has a unique white neighbor, color it red."

Zero forcing

"If a red vertex has a unique white neighbor, color it red."

Zero forcing

"If a red vertex has a unique white neighbor, color it red."

Zero forcing

"If a red vertex has a unique white neighbor, color it red."

$Z(G)=$ the smallest size of a set that colors all vertices red

Zero forcing

"If a red vertex has a unique white neighbor, color it red."

$Z(G)=$ the smallest size of a set that colors all vertices red

Zero forcing

"If a red vertex has a unique white neighbor, color it red."

$Z(G)=$ the smallest size of a set that colors all vertices red

Applications of zero forcing

GHENT
> Recommender systems
> Electric power networks
> Control of quantum systems

Hamming graphs

Definition

The Hamming graph $H(n, q)$ has vertex set $\{0, \ldots, q-1\}^{n}$, where two vertices (n-tuples) are adjacent if they differ in one position.

Hamming graphs

Definition

The Hamming graph $H(n, q)$ has vertex set $\{0, \ldots, q-1\}^{n}$, where two vertices (n-tuples) are adjacent if they differ in one position.
$>H(2, q)$ is the square lattice $K_{q} \times K_{q}$.

Hamming graphs

Definition

The Hamming graph $H(n, q)$ has vertex set $\{0, \ldots, q-1\}^{n}$, where two vertices (n-tuples) are adjacent if they differ in one position.
$>H(2, q)$ is the square lattice $K_{q} \times K_{q}$.
$>H(n, 2)$ is the hypercube Q_{n}.

Hypercubes

Theorem (AIM Minimum Rank - Special Graphs Work Group, 2008 and Alon, 2008, independently)

$$
Z\left(Q_{n}\right)=2^{n-1}
$$

Hypercubes

Theorem (AIM Minimum Rank - Special Graphs Work Group, 2008 and Alon, 2008, independently)

$$
Z\left(Q_{n}\right)=2^{n-1}
$$

Lattices

Theorem (AIM Minimum Rank - Special Graphs Work Group, 2008)

$$
Z(H(2, q))=q^{2}-2 q+2
$$

Lattices

(\%) fwo

Theorem (AIM Minimum Rank - Special Graphs Work Group, 2008)

$$
Z(H(2, q))=q^{2}-2 q+2
$$

Lattices

Theorem (AIM Minimum Rank - Special Graphs Work Group, 2008)

$$
Z(H(2, q))=q^{2}-2 q+2
$$

One set to force them all

The bound is tight

A matrix M represents a graph G if

$$
x \sim y \quad \Leftrightarrow \quad(M)_{x y} \neq 0
$$

for every two distinct vertices x, y.

The bound is tight

A matrix M represents a graph G if

$$
x \sim y \quad \Leftrightarrow \quad(M)_{x y} \neq 0
$$

for every two distinct vertices x, y.
Lemma (AIM Minimum Rank - Special Graphs Work Group, 2008 and Alon, 2008, independently)

If M represents a graph G on n vertices, then

$$
n-\operatorname{rank}(M) \leq Z(G)
$$

The bound is tight

A matrix M represents a graph G if

$$
x \sim y \quad \Leftrightarrow \quad(M)_{x y} \neq 0
$$

for every two distinct vertices x, y.
Lemma (AIM Minimum Rank - Special Graphs Work Group, 2008 and Alon, 2008, independently)

If M represents a graph G on n vertices, then

$$
n-\operatorname{rank}_{\mathbb{F}_{2}}(M) \leq Z(G)
$$

The bound is tight

A matrix M represents a graph G if

$$
x \sim y \quad \Leftrightarrow \quad(M)_{x y} \neq 0
$$

for every two distinct vertices x, y.
Lemma (AIM Minimum Rank - Special Graphs Work Group, 2008 and Alon, 2008, independently)
If M represents a graph G on n vertices, then

$$
n-\operatorname{rank}_{\mathbb{F}_{2}}(M) \leq Z(G)
$$

Choose $M=A+I \Longrightarrow Z(H(n, q)) \geq \frac{1}{2}\left(q^{n}+(q-2)^{n}\right)$

Our result

Theorem (Abiad, Simoens, Zeijlemaker, 2024)

$$
Z(H(n, q))=\frac{1}{2}\left(q^{n}+(q-2)^{n}\right)
$$

Thank you for listening!

A. Abiad, R. Simoens and S. Zeijlemaker, On the diameter and zero forcing number of some graph classes in the Johnson, Grassmann and Hamming association scheme, Discrete Appl. Math. 348 (2024) 221-230.

