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Zero forcing

“If a red vertex has a unique white neighbor, color it red.”

Z(G) = the smallest size of a set that colors all vertices red

Z(G)3
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Applications of zero forcing

➤ Recommender systems

➤ Electric power networks

➤ Control of quantum systems
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Hamming graphs

Definition

The Hamming graph H(n, q) has vertex set {0, . . . , q − 1}n, where
two vertices (n-tuples) are adjacent if they differ in one position.

➤ H(2, q) is the square latticeKq ×Kq .

➤ H(n, 2) is the hypercube Qn.
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Hypercubes

Theorem (AIM Minimum Rank - Special Graphs Work Group, 2008
and Alon, 2008, independently)

Z(Qn) = 2n−1
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Lattices

Theorem (AIM Minimum Rank - Special Graphs Work Group, 2008)

Z(H(2, q)) = q2 − 2q + 2
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One set to force them all

Z(H(n, q)) ≤ 1

2
(qn + (q − 2)n)
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The bound is tight

A matrixM represents a graph G if

x ∼ y ⇔ (M)xy ̸= 0

for every two distinct vertices x, y.

Lemma (AIM Minimum Rank - Special Graphs Work Group, 2008
and Alon, 2008, independently)

If M represents a graph G on n vertices, then

n− rank(M) ≤ Z(G).

ChooseM = A+ I =⇒ Z(H(n, q)) ≥ 1
2(q

n + (q − 2)n)
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Our result

Theorem (Abiad, Simoens, Zeijlemaker, 2024)

Z(H(n, q)) =
1

2
(qn + (q − 2)n)



10/10

Thank you for listening!

A. Abiad, R. Simoens and S. Zeijlemaker, On the diameter and zero forcing
number of some graph classes in the Johnson, Grassmann and Hamming

association scheme, Discrete Appl. Math. 348 (2024) 221-230.
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